Keras
Step 1: Sequential model
from keras.models import Sequential
model = Sequential()
Step 2: add layers
from keras.layers import Dense
model.add(Dense(units=64, activation='relu', input_dim=100))
model.add(Dense(units=10, activation='softmax'))
Step 3: Compile model
model.compile(loss='categorical_crossentropy', optimizer='sgd',metrics=['accuracy'])
Step 4: Train model with data
model.fit(x_train, y_train, epochs=5, batch_size=32)
Step 5: Evaluate
loss_and_metrics = model.evaluate(x_test, y_test, batch_size=128)
Step 6: Predict with the model
classes = model.predict(x_test, batch_size=128)